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ABSTRACT

The fractal nature of non-statistical fluctuations in the density distribution of singly charged particles produced in 32S–

Ag/Br interactions at an incident momentum of 200 A GeV/c has been investigated under the frame work of Hwa’s

multifractal moments, Takagi’s Multifractal moments and multifractal detrended fluctuation (MDFA) analysis. The

experimental data have been collected by using the nuclear photographic emulsion technique. All results obtained

experimental data is analyzed and have been compared with the simulated results.
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1. INTRODUCTION

As the size of the experimental data is finite there must be present fluctuation in the distribution of produced particle

spectrum in high energy heavy ion collision (AB collision) which is statistical in nature. But along with this there also

exists another type of fluctuation which arises due to some dynamical reasons. By taking an average over a comparatively

large sample the statistical fluctuation may be minimized by a substantial amount. At the time of averaging, the dynamical

components are also averaged out, as a result in the final state the distribution become smooth. There exist many statistical

techniques by the use of which one may obtain information about the physics of the dynamical nature of the fluctuation

present in the distribution of produced particle spectrum. In this field it is well known that the density fluctuation has self-

similar multifractal properties which may have resulted due to some kind of scale invariant dynamics. Evaluating

appropriate moments of the distribution and by examining how they depend on the phase-space interval size  X one can

draw information about the nature of the dynamical fluctuation. According to the theory [1–3] and from the experimental

results [4–8], it is established that the self-similarity in density fluctuations should lead to a power-law scaling behaviour of

the X -dependence of multiplicity moments. Such scaling laws can further be utilized to extract universal fractal

properties of the underlying distribution and its fluctuation. Efforts have been made to interpret the observed scale

invariances in terms of the random cascading model, phase transition or more conventional phenomenon such as the Bose–

Einstein correlation, but each with limited degree of success. Both the experimental and phenomenological status of the

subject has been comprehensively reviewed in [9].
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The self-similarity of scaled factorial moment (SFM) or intermittency phenomenon is observed in our previous

investigation [10]. We observed that in pseudorapidity )( space the SFM  qF of order q has been found to obey a scaling

property like

qXFq
  , (1)

For a region q=2 to q=6, where q is known as intermittency index. Our previous investigation [10] established

that the self-similarity of density fluctuations in one- dimensional particle distribution down to the experimental resolution

involves the fractal structures. In the paper [10] we already presented a detail and systematic investigations under the frame

work of Hwa’s multifractal moments and Takagi’s moments and measure the different fractal dimensions. Hence, in this

paper I have presented some results on scaling behaviour of multifractal moments as functions of X , and has been

examined by using the different techniques [1, 11- 15]. All the techniques have been described shortly in the methodology

section. Results obtained from these three different formalisms of multifractal analysis have been compared to the extent

possible. 32S–A/Br events at the same incident momentum and having identical multiplicity distribution as the

experimental one have been simulated by using the computer code FRITIOF based on the Lund Monte Carlo model [16]. It

is used to compare experimental in case of first two techniques. In order to compare the experimental results in case of

third technique I prepared an identical set of simulated data obtained from UrQMD code [16] as experimental one and

compare the experimental results with the simulated results. The major objectives of this paper are to establish the presence

of multifractal characteristics of the experimental data on density fluctuations beyond those arising from statistical noise in

terms of MFDFA moments, and compare all the results obtained from first two techniques how far they agree with each

other as well as to extract relevant fractal parameters.

2. EXPERIMENT AND DATA

Nuclear photographic emulsion plates (Ilford G5) were irradiated horizontally with a beam of 32S nuclei at an incident

momentum of 200 A GeV/c obtained from the super proton synchrotron (SPS) at CERN. After development, washing,

mounting on glass plates, and drying, the emulsion plates were volume scanned with the help of Leitz Metalloplan

microscopes at a total magnification of 300×. For minimize the error and biasness the scanning was done by two

independent observers. Considering a primary interaction induced by the incoming 32S projectile the total number of track

of secondary emission was counted and the emission angle ( ) and the azimuthal angle )( of each secondary track with

respect to the incident projectile track the number of secondary tracks were measured by an oil immersion objectives at a

total magnification of 1500×. According to emulsion terminology, the tracks coming out of an interaction can be classified

into four categories, namely, shower, grey, black tracks and projectile fragments. The singly charged particles moving at

relativistic speed )7.0(  is known as shower track. The particles produced in a high-energy interaction (mostly charged

mesons) fall into this category, and the total number of such particles in an event is denoted by sn . The grey tracks are

mainly due to protons knocked out from the target nucleus that directly participate in the interactions. A few percentages of

them may also be due to slowly moving mesons. The slowly moving heavy target fragments that coming out of the target

nucleus after the interaction has taken place is termed as black tracks. The projectile fragments are the spectator parts of the

incoming projectile nucleus. Details of the event selection criteria, classification of tracks and other aspects of the

experiment can be found elsewhere [17]. The number of heavy tracks in an event )( hn is equal to the sum of the number of
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black )( bn and grey tracks )( gn . A cut on the number of these heavy target fragments e.g., 8hn in each event ensured

that a subsample of 32S-interactions only with Ag or Br nuclei has been considered. Here I consider only those interactions

for which the number of spectator projectile fragments in an event )( pfn with charge 2Z is equal to zero, which enables

us to choose only those interactions for which total fragmentation of the incident 32S nucleus has taken place. Following

these criteria, only 200 central and semi-central 32S–Ag/Br interactions was selected for further analysis. The average

number of shower tracks for the considered sample of events was, 16.679.217  sn , and the present analysis is

confined only to the shower tracks.

The rapidity variable, defined as

l

l

pE

pE
y




 ln
2
1 ,

Is additive in nature under Lorentz transformations and is used to locate a particle in a one-dimensional phase

space. Here E and lp are, respectively, the energy and longitudinal component of linear momentum of the particle. As

energy and momentum of the emitted particles is very difficult to measure in case of emulsion experiment it is convenient

to replace the rapidity variable by the pseudorapidity variable, as

2
tanln


  .

Here in comparison with the total energy the rest energy of a particle was neglected, as is the case for most of the

charged mesons produced in high-energy interactions. There are many limitations in Nuclear emulsion experiments but it is

superior to other experiments in one respect that here we may get a very high angular resolution )1( mrad , and this

advantage can be exploited, where distribution of particles in small phase-space region is to be analysed. To overcome the

problem of shape dependence of the emitted particle distribution one can replace the phase-space variable (say ) with a

cumulative variable  [19] defined as
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Here, min and max are the minimum and maximum value of , and )( is the single-particle density

distribution in terms of . Irrespective of the basic phase-space variable from which it is derived, density distribution in

terms of the cumulative variable is always uniform in between 0 and 1 . Though the entire analysis on multiplicity

moments will henceforth be preformed taking  as the basic variable, we shall continue to call the corresponding space

as  -space. The pseudorapidity density distribution )()( 1




d

dn
N s

ev
 , for the shower tracks was obtained, )200(evN

being the total number of events in our sample. The distribution of )( is well represented by a Gaussian distribution. As
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mentioned earlier, the experimental results have also been compared with those obtained by analysing events generated

with the computer code FRITIOF based on Lund Monte Carlo model [21] for high-energy AB interaction in case of Hwa’s

multifractal moments and Takagi’s multifractal moments and in case of MFDFA moments we used UrQMD code [16]for

simulated data.

3. METHODOLOGY AND RESULTS

3.1 Hwa’s Multifractal Moments

It is well known that with the help of fractal geometry it is possible to characterize the distribution and it is well observed

in the investigation from the intermittency analysis of the present set of data [10]. According to the theory of multifractality

the density of final state hadrons should follow a scaling property with the phase-space partition size, and the scaling

properties should be different in different regions of phase space.

Due to the finiteness of average shower track multiplicity  sn multiparticle production phenomenon in high

energy nucleus-nucleus collision suffers an acute problem. The statistical fluctuation is very large for finite  sn of the

frequency distribution and its moments. As the bin size gets smaller, the problem of statistical noise arising out of the

growing presence of empty bins also requires special attention. The multifractal moment (G-moment) of order q, also

known as frequency moment, was introduced for an event as [11]





M

j
ij

q

is

ij
q qn

n

n
G

1

)(]
)(

[ (2)

Here M is the total number of intervals into which the entire phase space has been divided, ijn is the number of

particles in the jth bin of ith event, isn )( is the total number of particles in the ith event, 



M

j
ijis nn

1

])[( , and  is a step

function for integer as well as fractional q as defined in [11]. The step function is taken care of in order to account the

effect of empty bin. The theory of fractals demands that a self-similar behaviour in dynamical component should present in

the density fluctuation, the G-moments should exhibit following scaling behaviour:

:)()( )(q
qG 

   0 . (3)

Here τ(q) is called the mass exponent. The fractal behaviour cannot be extracted in the strict sense as the partition

number M remains finite, as the limit 0 cannot actually be reached and. But one can still obtain significant results

by examining the scaling properties of the G-moments in a region where  is of the order of the phase-space resolution

permitted by the experiment.  Taking the vertical average of G-moments over the sample of events under consideration,

one can determine the event space average of mass exponent as

)(ln

)ln(
)(

M

G
q q


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  (4)
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Figure 1: Variation of G-Moments with Phase-Space Partition Number for 32S–
Ag/Br Interaction at 200 A GeV/c: (a) Experiment, (b) FRITIOF and (c)

Random Number. In all Diagrams the Continuous Lines are Drawn Simply by
Joining the Points.

In the papers [1, 2 & 11] give a systematic and brief descriptions to determine various parameters related to

multifractal characteristics of density fluctuation. For different q Values of <lnGq > have been plotted against lnM in Fig 1.

The experimental results, the FRITIOF simulated results as well as the results obtained by random number generation are

shown in the diagram separately. From the above graph, it is very clear that for all three sets of data <lnGq > linearly

depend on lnM in accordance with equation (3), increasing for q < 0 and decreasing for q > 1showing a saturation effect in

the large lnM region. This saturation effect is may arise due to finiteness of  sn .

Figure 2: (a) Event Averaged Mass Exponents <τ(q)> and Lipschitz–
Holder Exponents <αq > Against q for 32S–Ag/Br interaction at 200 A
GeV/c. Data Points Represent the Experimental Values and the Lines
Represent the Corresponding FRITIOF Predictions. (b) Multifractal
Spectral Function for both the Experiment and FRITIOF. The Solid
Curve with Points Represents Experimental Results and the Dotted
Curve Represents the FRITIOF Prediction. The Straight Line is the

 qqf  )(
Line.

Following equation (4) the <τ(q)> values can be determined for each q from the best linear fit of the lnM

dependence of <lnGq >. The event space averaged multifractal spectral function

 qqq qf  )( ,

Is introduced through a Legendre transform with the help of Lipschitz–Holder exponent αq , that is defined as

q
q

q 




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Since a derivative is involved, it is necessary to determine <αq > for small incremental changes in q, especially in

the neighbourhood of q = 0, where <f (αq )> has its maximum. Fig 2(a) shows the variation of <τq> and <αq> values for the

experimental and FRITIOF data with q. Here no such significant difference is found between the experimental and

simulated results which are contradictory to the case of intermittency analysis [10].  A smooth and stable multifractal

spectral function <f (αq )> has been obtained both for the experiment and for the FRITIOF. Multifractal spectral function <f

(αq )> for both experiment and simulated data are plotted against <αq> in Fig 2(b), and both satisfy the general

characteristics mentioned in [1, 3] such as (i) <f (αq )> is a function of <αq > that is concave downwards, (ii) has a peak at

<α0 >, and (iii) the straight line <f (αq )> = <αq > tangentially touches both the spectra around <α1>, because <f (α1)> =

<α1> and <f´ (α1)> = 1. The region above the <f (αq )> = <αq > line has no physical significance and corresponds to an

unphysical region. The wide distribution in <f (αq )> and not a delta function peaked around α0 observed in the diagram

confirms multifractal nature of the density fluctuation in each case. The region of the spectrum where the value of <αq >

less than unity corresponds to the dense region of the spectrum and for the region for which the value of <αq > is greater

than unity is corresponds the sparse region of density distribution. Both experimental and simulated maximum values of <f

(αq )> are very close to unity, indicating that the empty bin effect particularly in the higher resolution region is marginal in

the present case. The FRITIOF simulated spectrum is wider than the experimental one. We already know for a pp

interaction a similar feature has been observed while UA1 data were being compared with GENCL and PYTHIA

predictions [4]. In the case of AB interactions multifractal characteristics were observed both in the experimental data as

well as in the Monte Carlo predictions based on a simple stochastic model [8].

Figure 3: (a) Experimental Values of the Intermittency Indices (φq ), (q − 1 − <τ(q)>) and (q − 1 −
<τ(q)>dyn) are Plotted Against q for 32S–Ag/Br Interaction at 200 A GeV/c. The Straight Lines are

best Linear fit to data. (b) Experimental Values of dq/d2 Obtained both from SFM (Solid
Diamonds) and G-Moments (Open Diamonds) are Plotted Against q. The Continuous (Solid and

dotted) Lines Represent the Corresponding Levy Law Prediction using Equation (9).

For the finiteness of the average number of charged particle, the Gq moments contain statistical contribution )( st
qG ,

this statistical part can be determined by distributing ns particles of an event randomly within 10   . It should be

remember that in this process short-range correlation among the particles, if any, is destroyed. The dynamical contribution

)( dyn
qG can then be extracted after eliminating the statistical one. In [11] it has been shown that, for a trivial dynamics the

dynamical part of <τq >, denoted by <τ(q)>dyn, should be equal to (q − 1). The deviation in <τ(q)>dyn from (q −1) is from the

nontrivial dynamical contribution. As all three G-moments Gq, st
qG and dyn

qG obey their respective power laws, the

following relation may be obtained:

1)()()(  qqqq stdyn  (5)
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whereas, the intermittency index φq introduced in equation (1), can also be connected to <τ(q)>dyn as [11]

q
dyn qq   1)( . (6)

In Figure 3(a) the variation of φq values along with the (q − 1 − <τ(q)>) and (q − 1 − <τ(q)>dyn) values against q is

shown. From the diagram it is clear that the φq values differ from the respective (q − 1 − <τ(q)>dyn) values by very small

amount. The difference in their values may probably be attributed to the different ways of defining SFM and G-moment.

The generalized Renyi dimensions, denoted by Dq , may be obtained from the intermittency indices as

1
1




q
D q

q


(7)

Therefore, with the help of equation (6) one can demand

1
)(




q

q
D

dyn

q

 . (8)

Simultaneously the anomalous dimensions are defined as

qq DDd  .

Where, D is the topological dimension of the supporting space. D = 1stands for the one dimensional analysis. The

Levy index (μ) is a very useful parameter to classify the properties of universal multifractals. For multifractal nature it is

found that the value of μ is lying between 0<μ< 2. Levy index indicates the degree of multifractality as well as estimates

the cascading rate in self-similar branching process [16]. The Levy index (μ) can also be utilized to highlight the possible

mechanism of particle production. Such a characterization of multifractality is possible if the underlying density

distribution can be described by a Levy stable law. Under a Levy law approximation, using anomalous dimensions one can

determine the value of μ from the following relation [21]:

122
1

2 





q

qq

d

dq



(9)

In Figure 3 b. Experimental values of dq/d2 obtained both from SFM (solid diamonds) and G-moments (open

diamonds) are plotted against q. The lines correspond, respectively, to μ = 1.15 for the exact values of φq and to μ = 1.25

for the approximate values. If μ were equal to 2, the Levy distribution would have transformed into a Gaussian one.

Minimum fluctuation in the self-similar branching processes is expected under such condition. On the other hand, the value

of dq/d2 become independent of order for μ = 0. This condition corresponds to mono-fractals and maximum fluctuation.

Under such condition one may expect a second-order phase transition. In our case neither of the above two conditions is

satisfied by the μ values obtained. One can see that the present values obtained from two different sets of parameters, are

very close to each other. The fact that μ >1.0, demands the presence of wild type of singularities arising out of fluctuations

in the density distribution which is non-Poisson like in nature. Here, it can be concluded as the mechanism of particle

production in the present case of 32S–Ag/Br interactions may be described in terms of a possible non-thermal phase

transition during the cascading process. On the other hand, a value of 0 < μ < 1.0 would have indicated soft bound

singularities, that can be related to a thermal phase transition interspersed in the cascading process. It should however be

mentioned that the present values of Levy index are less than a previously obtained value (μ = 1.6) based on a set of
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combined data on AB, pA, e+e− and μp interactions [21], but are well within the limit allowed by the Levy law description,

and do not necessarily warrant a thermal phase transition to occur during particle production.

3.2 Takagi’s Multifractal Moments

In order to overcome the difficulties of finiteness of the number of charged particle multiplicity an alternative approach has

suggested by Takagi [12]. According to his methodology a new set of multiplicity moments for q > 0 are suggested as


 


evN

i

M

j

q
ijq pT

1 1

)(ln)(  (10)

Tq is known as Takagi’s multifractal moments and are not affected by the finiteness of ns. Here, pij (= nij /K) is the

normalized density function, K is the total number of particles produced in Nev interactions and nij is the same as equation

(2).  Takagi’s method is based on two assumptions, (i) over the considered phase-space interval the density function ρ is

uniform, and (ii) the multiplicity distribution Pn does not depend on the location of the interval
 . The above two

conditions are found to be valid in the present case where Xη has been used as a phase space variable. According to the

theory of multifractals, Tq(
 ) should be a linear function of the logarithm of the resolution R(

 ) as,

)(ln)(   RBAT qqq  , (11)

Where Aq and Bq are two constants which are independent of q. If the linear dependence like that of equation (11)

is observed over a large range of R(
 ), following Takagi’s method the generalized dimensions can once again be

calculated as -

)1/(  qBD qq (12)

For q = 1, one may either take the appropriate limit [22], or may introduced the entropy function defined as


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evN

i

M

j
ijij ppS

1 1

ln)(  . (13)

The entropy function is also defined as,

.)(ln)( 1 constRDS    , (14)

Where, D1 is termed as information dimension. If the number of events Nev is quite large one will get

)/()( 1
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Where average bin multiplicity <n> = K/(M. Nev), and therefore, it can be write

)ln(]1)1[(ln  qqq DqAn . (16)

For the simplest choice of R(
 ), =

 . Replacing
 with <n>, the generalized dimensions can now be

obtained following the relations:
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 nDqAn qq
q ln]1)1[(ln (17)

for q ≥ 2. For q = 1,

 nDCnnn ln/ln 11 . (18)

Proceeding in the same way as [12], for a symmetric interval about the central value 5.0 of the distribution,

The values of <n ln n> and ln<nq > are calculated with increasing width of the interval about the central value ( 5.0 )

of the distribution according to the procedure mentioned in [12]. Our results on Takagi’s method of multifractal analysis

have been graphically shown by plotting <n ln n>/<n> against ln<n>, in Fig 4(a)–(c), respectively for the experimental

values in both η and ϕ-space and the FRITIOF prediction in η-space. Similarly the variation of ln<nq> against ln<n> is

shown in the Fig 4(d)–(f). From the slopes of best linear fit to data values of the plot <n ln n>/<n> vs ln<n> the

information dimension (D1) have been calculated respectively as 0014.0973.01 D , 002.0972.0  and 002.0979.0  .

Values of generalized dimensions for 2q have been obtained

Figure 4: Plot of Takagi’s Multifractal Moments for 32S–Ag/Br Interaction at 200 A
GeV/c. In all Diagrams the Straight Lines Represent best Linear fit to data

From the best linear fit of ln<nq> values against ln<n> as shown in Fig 4(d)–(f). For comparison, Dq values of

different orders obtained from Takagi’s generalized moments are plotted against 2q in Fig 5, together with those

obtained from the intermittency indices (φq ) and from the dynamical part of Hwa’s multifractal mass exponents <τ(q)>dyn,

respectively, making use of equations (7) and (8). With increasing q in general we find a monotonous deceasing trend in

the Dq values. However, the Dq values from Takagi’s method exhibit steepest fall, whereas those obtained from the

intermittency indices decrease at the slowest rate. Probably because of the different ways of defining the multifractal T-

moments, and due to the reason that in Takagi’s method no attempt has been made to separate the nonstatistical

contribution from the statistical one, in this case at large q the Dq values differ significantly from those obtained from the

SFMs and G-moments. However, for a simple Poissonian multiplicity distribution within a given interval
 , the Dq

values would all have been equal to unity. Any deviation in their values from 1.0 would thus provide us with a measure of

nonstatistical fluctuation. This has been found in all the methods described above for characterizing multifractality in

density fluctuations.
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Figure 5: Experimental Values of the Generalized
Dimensions Dq for 32S–Ag/Br Interaction at 200 A
GeV/c. Solid Lines are drawn to Guide the Eye.

On the basis of the fact that only Bernoulli type of fluctuations are responsible for a transition from monofractality

to multifractality, Bershadski [23] gave a thermodynamic interpretation of the observed results in terms of a constant

specific heat c:

1
ln


  q

qc
DDq

(19)

A monofractal to multifractal phase transition corresponds to a gap in the value of c from c = 0 to a nonzero finite

multifractal specific heat. By plotting Dq against ln q/(q − 1) we can, therefore, obtain the value of specific heat from the

slope of the best linear fit. Such a plot can be found in Fig 6, both for the experiment and FRITIOF simulated values. In

 -space a strict linearity is not seen over the entire range of q under consideration, and a linear fit in the range q = 2–5

resulted into c = 0.329 ± 0.061 ≈ 1/3. On the other hand,

Figure 6: Graph to Determine the Multifractal
Specific Heat for 32S–Ag/Br Interaction at 200 A

GeV/c, from the Dq Values Obtained by using
Takagi’s Method. The Experimental data Points in

η-Space are Simply Connected by a Continuous
Line, whereas, for both the FRITIOF Prediction in

η-Space and the Experimental data Points in ϕ-
Space, the Straight Lines Represent best Linear fit.

best linear fit of FRITIOF data in  -space over q = 2–7 results in c = 0.066 ± 0.009, which is much smaller than

the corresponding experimental value. On the other hand, in  -space linear fit once again over the entire range of q (= 2–

7) gave us a much smaller value of c (= 0.086 ± 0.008). The c-value in  -space is significantly smaller than a previously
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obtained value (c = 1/4) based on an analysis in the azimuthal angle space of similar 32S-ion induced experiment at same

incident energy [24]. As a probable reason for this discrepancy it may be pointed out that the analysis presented in [24] has

been performed over a set of events with minimum bias, that possesses a much wider range of impact parameter values,

and also has a much smaller value of average shower multiplicity as well as smaller statistics than the present set of

experimental data. Here the value of c in ϕ-space is also smaller than the predictions of another analysis (c = 0.56) on

simulated high multiplicity single jet events in the azimuthal angle space [25].

3.3 MFDFA Moments

In many cases the local singularities of particle density functions  X can be described by a power law like,

    FD

X
XX 




0
lim (20)

and may be interpreted as a self-similar (or self-affine in two dimension) fractal object with dimension DF . Now

each phase-space interval will have its own X dependence. If all of them are characterized by a same DF, the distribution

is considered as a geometrically monofractal object. If the exponent varies at different X positions then it is a multifractal

one. The multifractal detrended fluctuation analysis (MF-DFA) has so far not been used extensively for multiparticle

emission data analysis [15]. The detrended fluctuation analysis (DFA) method [13] is a very useful technique for the

determination of (mono) fractal scaling properties and the detection of long-range correlations in noisy and stationary time

series data [14]. Kantelhardt et al. [15] have advanced the DFA method for nonstationary and multifractal series, and the

generalized DFA is said to be the multifractal DFA (MF-DFA) method. The DFA and the MF-DFA methods are very

standard techniques for the time series data analysis, for completeness we provide a brief description of the methods in the

following section. Let xk: k = 1, 2, . . . , N be a fluctuating series (signal) of length N. The DFA/MF-DFA procedure

consists of the following five steps:

Step-1: Determine the Profile

   



i

K
K xxiY

1

, I = 1, 2, . . . , N (21)

Where 



N

K
Kx

N
x

1

1 is the mean value of the analyzed signals.

Step 2: Determine the Profile

Divide the profile )(iY into )/int( sNN s  non-overlapping segments of equal length s . One has to choose the s value

depending upon the signal length. In case, the length N is not a multiple of the considered scale parameter s, the same

dividing procedure is repeated starting from the opposite end of the signal. Hence, in order not to disregard any part of the

signal series, usually altogether
sN2 segments of equal length are obtained.

Step 3: Calculate the local trend for each of the 2Ns segments. This is done by least-square fits of the segments (or

subseries). Linear, quadratic, cubic or even higher order polynomial may be used to detrend the signal, and accordingly the

procedure is said to be the MF-DFA1, MF-DFA2, MF-DFA3, . . . analysis. Let, y be the best fitted polynomial to an

arbitrary segment  of the signal. Then determine the variance as
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  
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2

1
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For N = 1, 2, ……Ns and  = Ns+1, …….2Ns is given as,

  



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i
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1
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1

,  (23)

Step 4: The DFA function F is defined by averaging ),(2 sF  over all the sN2 segments, i.e.





sN

is

sF
N

sF
2

1

2/12 )},({
2

1
)(  (24)

On the other hand, the qth order MF-DFA function )(sFq is defined as

qN

i

q
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/12
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1
)( 



  (25)

for all 0q and for 0q the above definition is modified to the following form:
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1
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4

1
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In general, the order parameter q can take any real value. Note that for 2q the MF-DFA function reduces to the

standard DFA function as defined in Eqn. (23).

Step 5: Now varying the scale parameter ( s ), one can study the scaling behaviour of the detrended fluctuation

functions. If the signal series kx possesses long-range (power-law) correlation, )(sF as well as )(sFq
for large values of

s would follow a power-law type of scaling relation such as

HssF )( and )()( qh
q ssF  (27)

The exponent H is nothing but the well known Hurst exponent that can be related to the fractal dimension D as:

HD 2 . According to the value of H, kx is considered as long-range anti-correlated if 0 < H < 0.5; uncorrelated if H =

0.5 and long-range correlated if 5.0H . On the other hand, the )(qh , is termed as the generalized Hurst exponent [15].

For stationery time series Hqh  )2( , i.e. the well known Hurst exponent. For a monofractal signal )(qh is independent

of q since the variance ),(2 sF  is identical for all the subsignals, and hence Eq. (25) yields identical values for all q .

Here the function )(sFq
can be defined only for 2sm , where m is the order of the detrending polynomial. Moreover,

)(sFq
is statistically unstable for very large S(N/4). If small and large fluctuations scale differently, there will be a

significant dependence of )(qh on q . Whereas for positive values of q , )(sFq
will be dominated by the large variance

which corresponds to the large deviations from the detrending polynomial, for negative values of q major contributions of

)(sFq
arise from small fluctuations from the detrending polynomial. Thus for positive (negative) values of q , )(sFq
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describes the scaling behaviour of the segment with large (small) fluctuations. Knowing the values of )(qh one can easily

estimated the multifractal mass exponent )(q and the multifractal singularity spectrum )(f . It is very well known that

the )(qh is related to )(q through

1)()(  qqhq (28)

A non linear )(q spectrum demands the existence of multifractal nature of the analyzed time series data. For a

monofractal system )(q should be a linear function of q . The singularity strength function )(q and the multifractal

spectrum )(f are connected via Legendre transformation [26, 27]: qq q  /)(  as,

)()( qqf   (29)

The generalized fractal dimension qD may be derived from the mass exponent )(q as:

1

)(




q

q
Dq

 (30)

Here these methods are employed to the single-event distributions of produced charged mesons in high-energy

nucleus-nucleus collisions. The scale parameter s is nothing but the number of partitions in  -space. In Fig. 7, I plot the

averaged DFA function  )(sF with phase space partition number (scale) s for the 32S - Ag/Br data. From Fig.1 it is

clear that  )(sF for large values of s would follow a power-law type of scaling relation. In this analysis I vary s from

N to N/4, where N is the multiplicity cut. In the region 248  s the scaling relation (27) holds good. As the scaling

behaviour holds well for a fairly large value of s in all cases, one

Figure 7: The Variation of Event Averaged

DFA Fluctuation Functions  )(sF with
Scale Parameters for the 32S - Ag/Br

Interaction at 200A GeV/c. The Solid (dotted)
lines Represent the best Fitted Straight Lines

to the Experimental (UrQMD) data.

May expect that the signal series kx should possess some kind of long-range (power-law) correlation for both

experimental and simulated (UrQMD) data. Here I find that H = 1.474 ± 0.017 (experiment) and H =1.585±0.017

(UrQMD). In all the cases the value of H greater than unity again establish the fact that there must present some long range

correlation in both experimental and simulated (UrQMD) data. Using the relation DF = 2 − H, I estimate the values of
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fractal dimension (DF) as DF = 0.526 ± 0.017 (experiment) and DF = 0.415 ± 0.017 (UrQMD). It is well known that, for a

fractal object the fractal dimension DF is less than DT, the topological dimension of the supporting space. For one

dimensional analysis the value of DT = 1. The deviation of DF from DT is a measure of the degree of fractality. All the

values of DF obtained from this analysis are much smaller than unity and hence my DFA results demand that the 

distributions in the interactions are highly fractal. It is also clear that the UrQMD model possesses fractal dynamics that is

apparently identical to those of the experiments. In our previous multifractal analysis using the data of 32S -Ag/Br

interaction we observed similar behaviours. All these observations (present and previous) suggest that (multi)fractality gets

weakened with increasing multiplicity. In Fig. 8, the variation of event averaged MFDFA fluctuation functions with scale

parameter s is shown for both experimental and simulated data.

Figure 8: The Variation of Event Averaged MFDFA Fluctuation Functions with Scale
Parameter s. Left Panel: Results obtained from Experimental data and Right Panel:

Results Obtained from UrQMD data. The Lines Joining Points are shown to Guide the
Eye.

From the variation of  qF against the scale parameter s it is obvious that there are no saturation effects at

higher value of s like qG moments [10] and hence one may conclude that  qF function presented here are not

significantly influenced by the finiteness of the event multiplicity. In Fig. 9 the experimental and simulated values of Hurst

exponent )(qh for 32S - Ag/Br interaction are plotted against order q . The values of )(qh is determined from the linear

portion 124  s of  qF vs s graph. For 1q region the values of )(qh decreases slowly and there is a sharp

fall in the q = −1 to q = 1 region and then )(qh tends to saturate in the region 1q .
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<(q)>

Figure 9: Left Panel: The Variation of Event Averaged hq Functions with scale
Parameter s for 32S - Ag/Br Interaction at 200AGeV/c. The Lines Joining Points are

Shown to guide the Eye. Right Panel: The Variation of Event Averaged Mass

Exponent )(q with Scale Parameters for 32S - Ag/Br Interaction

In Fig. 9. I have also graphically represented how the values of )(q for the experimental and UrQMD data vary

with q . Unlike in the case of intermittency analysis, here no significant difference between the experimental and simulated

results is observed. Mass exponents )(q were derived from the fluctuation functions for q values between −5 and +5 and

plotted against the q values. A nonlinear  )(q function means multiple scaling, which requires a hierarchy of scaling

exponents (multiscaling) in order to accurately represent the scaling property. The degree of non-linearity of  )(q

function can give an idea about the degree of multifractality. These nonlinear functions have convex downward facing

plots, with the degree of convexity reflecting the level of heterogeneity in scaling exponents. A smooth and stable

multifractal spectral function )(f has been obtained both for the experiment and for the UrQMD for 32S induced

interactions. Multifractal spectra are plotted against  in Fig. 10, and satisfy the general characteristics [1, 2] such as (i)

)(f is a function of  that is concave downwards, and (ii) has a peak at
0 . But unlike the Hwa’s multifractal analysis

the moments violates the condition (iii) i.e. straight line  )(f tangentially touches both the spectra.

Figure 10: Left Panel: Multifractal Spectrum Function )(f for both Experiment

and UrQMD. The Straight line Represents  )(f .                  Right Panel:

Generalized Fractal Dimension qD
as a Function of q for both Experiment and

UrQMD in Case of 32S - Ag/Br Interaction.



48 Dr. Malay Kumar Ghosh

Impact Factor (JCC):6.2284 NAAS Rating 3.45

The region above the line  )(f corresponds to an unphysical region. The fact that a wide distribution in

)(f and not a delta function peaked around 0 has not been obtained. In the present analysis the peak values of the

spectra are shifted to a higher value of . All observations confirm the multifractal nature of the density fluctuation in

each case. The left and right side of the spectrum corresponds, respectively, to the dense and sparse regions of density

distribution. Both simulated and experimental maximum values of )(f are very close to unity, indicating that the empty

bin effect particularly in higher resolution region, is marginal in the present case. The generalized fractal dimension
qD

plotted against the order q in Fig. 10, the values of generalized fractal dimensions
qD determined using MFDFA methods

are as follows:

Table 1

Interactions q Experiment UrQMD

qD qD qD qD

32S - Ag/Br

2 0.437 0.0376 0.361 0.0440
3 0.661 0.0178 0.601 0.0213
4 0.752 0.0114 0.698 0.0139
5 0.805 0.0083 0.753 0.0102

From the tabulated values of
qD obtained from the MFDFA method it clear that all values are much smaller than

those obtained from the previous conventional methods. It is also clear from the tabulated values that there exists

insignificant difference between the experimental values and the corresponding UrQMD predictions in case of 16O - Ag/Br

interactions, but there exists some discrepancies in case of 32S - Ag/Br Interactions. In this present investigation a distinct

and systematic increase in is found with the order number q. This behaviour is quite different from the behaviour in the
qD

values obtained from the conventional methods. It should mention that the
qD values obtained from Takagi’s method

exhibit a sharp fall. This is probably because of the fact that Takagi moments are not free from the statistical noise [12].

4. DISCUSSION

In this analysis I presented a systematic analysis of the pseudorapidity fluctuation of charged mesons produced in 32S -

Ag/Br interaction at 200A GeV in terms of the Hwa’s multifractal moments, Takagi’s moments and DFA and MF-DFA

methods. To understand the underlying mechanism(s) of particle production in these interactions, the experimental results

are simulated by using the Fritiof model in case of first two moments and UrQMD model for the third technique. From the

above analysis it is established that experimental data along with all simulated data behave like (multi)fractal system. The

nature of )(qh , )(q and the singularity spectra also confirm the presence of multifractality in the data as well as in the

simulation. The nature of these spectra and the estimated values of the Hurst exponent H demand that the origin of

fractality is of the two, three or higher order particle correlation in all cases. The MF-DFA prediction of the generalized

fractal dimensions are consistently lower than that obtained from previous techniques like scale factorial moment analysis,

Hwa’s multifractal analysis and Takagi’s method. In case of MFDFA moments it should noted that within the error

margins the experimental results cannot be discriminated from their UrQMD values. The observations signify that the

MFDFA technique like Hwa’s multifractal moments and Takagi’s moment is probably not sufficiently sensitive to the

nature of fluctuation present in the data. A reliable method of filtering out the statistical noise from the MF-DFA function

is needed to make the technique more effective.
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